pandas的Series常用函数
pandas的Series常用函数:
index 获取 Series 的索引
values 获取 Series 的数据部分(返回 NumPy 数组)
head(n) 返回 Series 的前 n 行(默认为 5)
tail(n) 返回 Series 的后 n 行(默认为 5)
dtype 返回 Series 中数据的类型
shape 返回 Series 的形状(行数)
describe() 返回 Series 的统计描述(如均值、标准差、最小值等)
isnull() 返回一个布尔 Series,表示每个元素是否为 NaN
notnull() 返回一个布尔 Series,表示每个元素是否不是 NaN
unique() 返回 Series 中的唯一值(去重)
value_counts() 返回 Series 中每个唯一值的出现次数
map(func) 将指定函数应用于 Series 中的每个元素
apply(func) 将指定函数应用于 Series 中的每个元素,常用于自定义操作
astype(dtype) 将 Series 转换为指定的类型
sort_values() 对 Series 中的元素进行排序(按值排序)
sort_index() 对 Series 的索引进行排序
dropna() 删除 Series 中的缺失值(NaN)
fillna(value) 填充 Series 中的缺失值(NaN)
replace(to_replace, value) 替换 Series 中指定的值
cumsum() 返回 Series 的累计求和
cumprod() 返回 Series 的累计乘积
shift(periods) 将 Series 中的元素按指定的步数进行位移
rank() 返回 Series 中元素的排名
corr(other) 计算 Series 与另一个 Series 的相关性(皮尔逊相关系数)
cov(other) 计算 Series 与另一个 Series 的协方差
to_list() 将 Series 转换为 Python 列表
to_frame() 将 Series 转换为 DataFrame
iloc[] 通过位置索引来选择数据
loc[] 通过标签索引来选择数据
一些统计类函数:
sum() 输出Series的总和
mean() 输出Series的平均值
max() 输出Series的最大值
min() 输出Series的最小值
std() 输出Series的标准差
idxmax() 获取最大值的索引
idxmin() 获取最小值的索引