机器学习:逻辑回归_混淆矩阵示例

机器学习,逻辑回归,混淆矩阵示例代码:

from sklearn.metrics import confusion_matrix
import pandas as pd

# 1、准确数据,y_true真实结果,y_pre_A模型A预测结果,y_pre_B模型B预测结果
y_true = ['恶性','恶性','恶性','恶性','恶性','恶性','良性','良性','良性','良性']
y_pre_A = ['恶性','恶性','恶性','良性','良性','良性','良性','良性','良性','良性']
y_pre_B = ['恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','良性']

# 2、混淆矩阵 模型A
A = confusion_matrix(y_true,y_pre_A,labels=['恶性','良性'])
print(pd.DataFrame(A,columns=['恶性','良性'],index=['恶性','良性']))

# 3、混淆矩阵 模型B
B = confusion_matrix(y_true,y_pre_B,labels=['恶性','良性'])
print(pd.DataFrame(B,columns=['恶性','良性'],index=['恶性','良性']))