机器学习,逻辑回归,混淆矩阵示例代码:
from sklearn.metrics import confusion_matrix import pandas as pd # 1、准确数据,y_true真实结果,y_pre_A模型A预测结果,y_pre_B模型B预测结果 y_true = ['恶性','恶性','恶性','恶性','恶性','恶性','良性','良性','良性','良性'] y_pre_A = ['恶性','恶性','恶性','良性','良性','良性','良性','良性','良性','良性'] y_pre_B = ['恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','良性'] # 2、混淆矩阵 模型A A = confusion_matrix(y_true,y_pre_A,labels=['恶性','良性']) print(pd.DataFrame(A,columns=['恶性','良性'],index=['恶性','良性'])) # 3、混淆矩阵 模型B B = confusion_matrix(y_true,y_pre_B,labels=['恶性','良性']) print(pd.DataFrame(B,columns=['恶性','良性'],index=['恶性','良性']))