机器学习,逻辑回归,混淆矩阵,F1示例代码:
from sklearn.metrics import f1_score # 1、准确数据,y_true真实结果,y_pre_A模型A预测结果,y_pre_B模型B预测结果 y_true = ['恶性','恶性','恶性','恶性','恶性','恶性','良性','良性','良性','良性'] y_pre_A = ['恶性','恶性','恶性','良性','良性','良性','良性','良性','良性','良性'] y_pre_B = ['恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','恶性','良性'] # 2、计算f1 print(f1_score(y_true,y_pre_A,pos_label='恶性')) print(f1_score (y_true,y_pre_B,pos_label='恶性'))